Isotropic Grassmannians, Plücker and Cartan maps

نویسندگان

چکیده

This work is motivated by the relation between KP and BKP integrable hierarchies, whose τ-functions may be viewed as flows of sections dual determinantal Pfaffian line bundles over infinite dimensional Grassmannians. In finite dimensions, we show how to relate Cartan map, which, for a vector space V dimension N, embeds Grassmannian GrV0(V+V*) maximal isotropic subspaces + V*, with respect natural scalar product, into projectivization exterior Λ(V), Plücker which GrV(V V*) all N-planes in V* ΛN(V V*). The coordinates on are expressed bilinearly terms coordinates, holomorphic bundle Pf*→GrV0(V+V*,Q). affine big cell, this equivalent an identity Cauchy–Binet type, expressing determinants square submatrices skew symmetric N × matrix bilinear sums Pfaffians their principal minors.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Cohomology of Isotropic Grassmannians

Let G be a classical Lie group and P a maximal parabolic subgroup. We describe a quantum Pieri rule which holds in the small quantum cohomology ring of G/P . We also give a presentation of this ring in terms of special Schubert class generators and relations. This is a survey paper which reports on joint work with Anders S. Buch and Andrew Kresch.

متن کامل

Incompressible Grassmannians of Isotropic Subspaces

We study 2-incompressible Grassmannians of isotropic subspaces of a quadratic form, of a hermitian form over a quadratic extension of the base field, and of a hermitian form over a quaternion algebra.

متن کامل

Nesting Maps of Grassmannians

Let F be a field and Gr(i, F ) be the Grassmannian of idimensional linear subspaces of F . A map f : Gr(i, F ) −→ Gr(j, F ) is called nesting if l ⊂ f(l) for every l ∈ Gr(i, F ). Glover, Homer and Stong showed that there are no continuous nesting maps Gr(i, C) −→ Gr(j, C) except for a few obvious ones. We prove a similar result for algebraic nesting maps Gr(i, F ) −→ Gr(j, F ), where F is an al...

متن کامل

A Giambelli Formula for Isotropic Grassmannians

LetX be a symplectic or odd orthogonal Grassmannian parametrizing isotropic subspaces in a vector space equipped with a nondegenerate (skew) symmetric form. We prove a Giambelli formula which expresses an arbitrary Schubert class in H∗(X,Z) as a polynomial in certain special Schubert classes. We introduce and study theta polynomials, a family of polynomials which are positive linear combination...

متن کامل

Quantum Pieri Rules for Isotropic Grassmannians

We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2021

ISSN: ['0022-2488', '1527-2427', '1089-7658']

DOI: https://doi.org/10.1063/5.0021269